Monday, August 20, 2007

String Theory

image from www.forums.randi.org
text from Wikipedia

The basic idea behind all string theories is that the constituents of reality are strings of extremely small size (possibly of the order of the Planck length, about 10−35 m) which vibrate at specific resonant frequencies.[13] Thus, any particle should be thought of as a tiny vibrating object, rather than as a point. This object can vibrate in different modes (just as a guitar string can produce different notes), with every mode appearing as a different particle (electron, photon, etc.). Strings can split and combine, which would appear as particles emitting and absorbing other particles, presumably giving rise to the known interactions between particles.

In addition to strings, this theory also includes objects of higher dimensions, such as D-branes and NS-branes. Furthermore, all string theories predict the existence of degrees of freedom which are usually described as extra dimensions. String theory is thought to include some 10, 11, or 26 dimensions, depending on the specific theory and on the point of view.

Interest in string theory is driven largely by the hope that it will prove to be a consistent theory of quantum gravity or even a theory of everything. It can also naturally describe interactions similar to electromagnetism and the other forces of nature. Superstring theories include fermions, the building blocks of matter, and incorporate supersymmetry, a conjectured (but unobserved) symmetry of nature. It is not yet known whether string theory will be able to describe a universe with the precise collection of forces and particles that is observed, nor how much freedom the theory allows to choose those details.

String theory as a whole has not yet made falsifiable predictions that would allow it to be experimentally tested, though various planned observations and experiments could confirm some essential aspects of the theory, such as supersymmetry and extra dimensions. In addition, the full theory is not yet understood. For example, the theory does not yet have a satisfactory definition outside of perturbation theory; the quantum mechanics of branes (higher dimensional objects than strings) is not understood; the behavior of string theory in cosmological settings (time-dependent backgrounds) is still being worked out; finally, the principle by which string theory selects its vacuum state is a hotly contested topic (see string theory landscape).

String theory is thought to be a certain limit of another, more fundamental theory — M-theory — which is only partly defined and is not well understood.[14]

1 comment:

Anonymous said...

Exegesis!